EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α
نویسندگان
چکیده
Epithelial cell adhesion molecule (EpCAM) was reported to be cleaved into extracellular domain of EpCAM (EpEX) and intracellular domain of EpCAM (EpICD). We previously reported that EpCAM serves as a potent stem cell marker which is highly and selectively expressed by undifferentiated rather than differentiated hESC. However, the functional role of EpCAM remains elusive. Here, we found that EpEX and EpCAM enhance the efficiency of OSKM reprogramming. Interestingly, Oct4 or Klf4 alone, but not Sox2, can successfully reprogram fibroblasts into iPSCs with EpEX and EpCAM. Moreover, EpEX and EpCAM trigger reprogramming via activation of STAT3, which leads to the nuclear-translocation of HIF2α. This study reveals the importance of a novel EpEX/EpCAM-STAT3-HIF2α signal in the reprogramming process, and uncovers a new means of triggering reprogramming by delivery of soluble and transmembrane proteins.
منابع مشابه
Oct4-Induced Pluripotency in Adult Neural Stem Cells
The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-spe...
متن کاملEnhanced OCT4 transcriptional activity substitutes for exogenous SOX2 in cellular reprogramming
Adenoviral early region 1A (E1A) is a viral gene that can promote cellular proliferation and de-differentiation in mammalian cells, features required for the reprogramming of somatic cells to a pluripotent state. E1A has been shown to interact with OCT4, and as a consequence, to increase OCT4 transcriptional activity. Indeed, E1A and OCT4 are sufficient to revert neuroepithelial hybrids to plur...
متن کاملForced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts.
Genetic reprogramming of adult cells to generate induced pluripotent stem (iPS) cells is a new and important step in sidestepping some of the ethical issues and risks involved in the use of embryonic stem cells. iPS cells can be generated by introduction of transcription factors, such as OCT4, SOX2, KLF4, and CMYC. iPS cells resemble embryonic stem cells in their properties and differentiation ...
متن کاملReactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig
Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obta...
متن کاملEstablishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article
Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...
متن کامل